MG Chemicals UK Limited Version No: A-1.02 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Issue Date:28/03/2018 Revision Date: 16/03/2020 L.REACH.GBR.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### 1.1. Product Identifier | Product name 4229 Connector Coating | | | |-------------------------------------|--|--| | Synonyms | Synonyms SDS Code: 4229; 4229-55ML, 4229-1L, 4229-4L | | | Other means of identification | Jentification Not Applicable | | #### 1.2. Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses Liquid Coating substitute for electrical tape. Coats wires, connectors etc | | Liquid Coating substitute for electrical tape. Coats wires, connectors etc | | | | |---|--|--|--|--|--| | Uses advised against Not Applicable | | | | | | ## 1.3. Details of the supplier of the safety data sheet | Registered company name | MG Chemicals UK Limited | MG Chemicals (Head office) | |-------------------------|---|--| | Address | Hearne House, 23 Bilston Street, Sedgely Dudley DY3 1JA United
Kingdom | 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada | | Telephone | +(44) 1663 362888 | +(1) 800-201-8822 | | Fax | Not Available | +(1) 800-708-9888 | | Website | Not Available | www.mgchemicals.com | | Email | sales@mgchemicals.com | Info@mgchemicals.com | | | | | ## 1.4. Emergency telephone number | Association / Organisation | Verisk 3E (Access code: 335388) | Not Available | |---|---------------------------------|---------------| | Emergency telephone numbers | +(44) 20 35147487 | Not Available | | Other emergency telephone numbers +(0) 800 680 0425 | | Not Available | #### **SECTION 2 HAZARDS IDENTIFICATION** ## 2.1. Classification of the substance or mixture | Classification according to regulation (EC) No 1272/2008 [CLP] [1] | H225 - Flammable Liquid Category 2, H315 - Skin Corrosion/Irritation Category 2, H319 - Eye Irritation Category 2, H351 - Carcinogenicity Category 2, H361 - Reproductive Toxicity Category 2, H336 - Specific target organ toxicity - single exposure Category 3 (narcotic effects), H373 - Specific target organ toxicity - repeated exposure Category 2, H411 - Chronic Aquatic Hazard Category 2 | | | |--|--|--|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from EC Directive 67/548/EEC - Annex I; 3. Classification drawn from EC Directive 1272/2008 - | | | 2.2. Label elements Hazard pictogram(s) Annex VI SIGNAL WORD DANGER ## Hazard statement(s) | Highly flammable liquid and vapour. | | | | |--|--|--|--| | ses skin irritation. | | | | | es serious eye irritation. | | | | | ed of causing cancer. | | | | | uspected of damaging fertility or the unborn child. | | | | | May cause drowsiness or dizziness. | | | | | May cause damage to organs through prolonged or repeated exposure. | | | | | Toxic to aquatic life with long lasting effects. | | | | | | | | | ## Supplementary statement(s) Not Applicable ## Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | | | | |------|--|--|--|--| | P210 | (eep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | | | | P260 | not breathe dust/fume/gas/mist/vapours/spray. | | | | | P271 | Use in a well-ventilated area. | | | | | P280 | ar protective gloves/protective clothing/eye protection/face protection. | | | | | P240 | round/bond container and receiving equipment. | | | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | | | P242 | Use only non-sparking tools. | | | | | P243 | Take precautionary measures against static discharge. | | | | | P273 | Avoid release to the environment. | | | | ## Precautionary statement(s) Response | | <u>, · </u> | | | | |----------------|---|--|--|--| | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | | | | | P370+P378 | n case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | | | | P305+P351+P338 | IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | | | P337+P313 | ve irritation persists: Get medical advice/attention. | | | | | P391 | Collect spillage. | | | | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. | | | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | | | | | | | | ## Precautionary statement(s) Storage | Todationary stationarit(s) storage | | | |------------------------------------|--|--| | P403+P235 | Store in a well-ventilated place. Keep cool. | | | P405 Store locked up. | | | # Precautionary statement(s) Disposal | restationary statement(s) proposal | | | | | |------------------------------------|---|--|--|--| | P501 | Dispose of contents/container in accordance with local regulations. | | | | # 2.3. Other hazards Ingestion may produce health damage*. Cumulative effects may result following exposure*. May produce discomfort of the eyes and respiratory tract*. Repeated exposure potentially causes skin dryness and cracking $\!\!\!^\star$. REACh - Art.57-59: The mixture does not contain Substances of Very High Concern (SVHC) at the SDS print date. # SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS #### 3.1.Substances See 'Composition on ingredients' in Section 3.2 ## 3.2.Mixtures | 1.CAS No
2.EC No
3.Index No
4.REACH No | %[weight] | Name | Classification according to regulation (EC) No 1272/2008 [CLP] | |---|-----------|--|---| | 1.64742-89-8.
2.265-192-2
3.649-267-00-0
4.01-2119471306-40-XXXX | 30-60 | solvent naphtha
petroleum, light
aliphatic | Flammable Liquid Category 2, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Aspiration Hazard Category 1, Chronic Aquatic Hazard Category 3; H225, H361, H336, H373, H304, H412 [1] | | 1.110-54-3
2.203-777-6
3.601-037-00-0
4.01-2119480412-44-XXXX | 10-30 | n-hexane | Flammable Liquid Category 2, Aspiration Hazard Category 1, Specific target organ toxicity - repeated exposure Category 2, Skin Corrosion/Irritation Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Chronic Aquatic Hazard Category 2; H225, H361f ***, H304, H373 **, H315, H336, H411 [3] | | 1.1330-20-7
2.215-535-7
3.601-022-00-9 | 10-30 | <u>xylene</u> | Flammable Liquid Category 3, Acute Toxicity (Inhalation) Category 4, Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 2; H226, H332, H312, H315 [3] | | 4.01-2119488216-32-XXXX | | | | |--|--|----------------------------|---| | 1.67-64-1
2.200-662-2
3.606-001-00-8
4.01-2119471330-49-XXXX | 5-10 | <u>acetone</u> | Flammable Liquid Category 2, Eye Irritation Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects); H225, H319, H336, EUH066 [3] | | 1.100-41-4
2.202-849-4
3.601-023-00-4
4.01-2119489370-35-
XXXX registration numbers
missing | 1-5 | <u>ethylbenzene</u> | Flammable Liquid Category 2, Acute Toxicity (Inhalation) Category 4, Specific target organ toxicity - repeated exposure Category 2 (hearing organs), Aspiration Hazard Category 1; H225, H332, H373, H304 [3] | | 1.112945-52-5
2.271-893-4
3.Not
Available
4.Not Available | 1-5 | silica amorphous,
fumed | Not Applicable | | 1.1333-86-4
2.215-609-9
3.Not Available
4.01-2119384822-32-
XXXX 01-2119475601-40-
XXXX 01-2119489801-30-XXXX | 0.1-1 | carbon black | Carcinogenicity Category 2; H351 ^[1] | | Legend: | Classified by Chemwatch; 2. Classification drawn from EC Directive 67/548/EEC - Annex I; 3. Classification drawn from EC Directive 1272/2008 - Annex VI 4. Classification drawn from C&L | | | #### **SECTION 4 FIRST AID MEASURES** #### 4.1. Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | #### 4.2 Most important symptoms and effects, both acute and delayed See Section 11 # 4.3. Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Following acute or short term repeated exposures to n-hexane: - Large quantities of n-hexane are expired by the lungs after vapour exposure (50-60%). Humans exposed to 100 ppm demonstrate an n-hexane biological half life of 2 hours. - Finitial attention should be directed towards evaluation and support of respiration. Cardiac dysrhythmias are a potential complication. ## INGESTION: • Ipecac syrup should be considered for ingestion of pure hexane exceeding 2-3ml/kg. Extreme caution must be taken to avoid aspiration since small amounts of n-hexane intratracheally, produce a severe chemical pneumonitis. [Ellenhorn and Barceloux: Medical Toxicology] BIOLOGICAL EXPOSURE INDEX - BEI BEIs represent the levels of determinants which are most likely to be observed in specimens collected in a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the Exposure Standard (ES or TLV). Determinant Index Sampling Time Comments 1. 2,5-hexanedione in urine 5 mg/gm creatinine End of shift NS 2. n-Hexane in end-exhaled air SQ NS: Non-specific determinant; Metabolite observed following exposure to other materials. SQ: Semi-quantitative determinant; Interpretation may be ambiguous - should be used as a screening test or confirmatory test. For acute or short term repeated exposures to xylene: - Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal. - ▶ Pulmonary absorption is rapid with about 60-65% retained at rest. - ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance. - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): Sampling Time Determinant Index 1.5 gm/gm creatinine Methylhippu-ric acids in urine End of shift Last 4 hrs of shift 2 mg/min ## **SECTION 5 FIREFIGHTING MEASURES** #### 5.1. Extinguishing media #### 5.2. Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### 5.3. Advice for firefighters | Fire Fighting | | |-----------------------|---| | Fire/Explosion Hazard | Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat, flame and/or oxidisers. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. May emit clouds of acrid smoke | ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** ## 6.1. Personal precautions, protective equipment and emergency procedures See section 8 # 6.2. Environmental precautions See section 12 | 6.3. Methods and material for containment and cleaning up | | | | | | | | |---
---|--|--|---|-------------|-----------|---------------| | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container. | | | | | | | | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. Chemical Class: aromatic hydrocarbons For release onto land: recommended sorbents listed in order of priority. | | | | | | using. | | | Major Spills | SORBENT TYPE RANK APPLICATION COLLECTION LIMITATIONS | | | | LIMITATIONS | | | | | LAND SPILL - SMALL | | | | | | | | Feathers - pillow 1 throw pitchfork DGC, RT cross-linked polymer - particulate 2 shovel shovel R,W,SS cross-linked polymer-pillow 2 throw pitchfork R, DGC, RT | | | | | | DGC, RT | | | | | | | | | shovel | R,W,SS | | | | | | | | pitchfork | R, DGC, RT | | | sorbent clay - particulate | | | 3 | shovel | shovel | R, I, P, | | | treated clay/ treated natural organic - particulate 3 shovel R, I | | | | | R, I | | | | wood fibre - pillow | | | 4 | throw | pitchfork | R, P, DGC, RT | Comments #### LAND SPILL - MEDIUM | cross-linked polymer -particulate | 1 | blower | skiploader | R, W, SS | |---|---|--------|------------|-----------------| | treated clay/ treated natural organic - particulate | 2 | blower | skiploader | R, I | | sorbent clay - particulate | 3 | blower | skiploader | R, I, P | | polypropylene - particulate | 3 | blower | skiploader | W, SS, DGC | | feathers - pillow | 3 | throw | skiploader | DGC, RT | | expanded mineral - particulate | 4 | blower | skiploader | R, I, W, P, DGC | #### Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 #### 6.4. Reference to other sections Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** #### 7.1. Precautions for safe handling - Containers, even those that have been emptied, may contain explosive vapours. - Do NOT cut, drill, grind, weld or perform similar operations on or near containers. #### Contains low boiling substance: Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately. - Check for bulging containers. - Vent periodically - ▶ Always release caps or seals slowly to ensure slow dissipation of vapours - Electrostatic discharge may be generated during pumping this may result in fire. - Ensure electrical continuity by bonding and grounding (earthing) all equipment. - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). - Avoid splash filling. - ▶ Do NOT use compressed air for filling discharging or handling operations. - Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. Safe handling - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked - Avoid smoking, naked lights, heat or ignition sources. - When handling, DO NOT eat, drink or s - Vapour may ignite on pumping or pouring due to static electricity. - ▶ Earth and secure metal containers when dispensing or pouring product. - Use spark-free tools when handling. - Avoid contact with incompatible materials. - Keep containers securely sealed. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - DO NOT allow clothing wet with material to stay in contact with skin ## Fire and explosion protection - ▶ Store in original containers in approved flame-proof area. - No smoking, naked lights, heat or ignition sources. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - Other information Keep containers securely sealed. - Store away from incompatible materials in a cool, dry well ventilated area. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ## 7.2. Conditions for safe storage, including any incompatibilities - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - ► Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. ## Suitable container - ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### Xylenes: - ▶ may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride - ▶ attack some plastics, rubber and coatings - may generate electrostatic charges on flow or agitation due to low conductivity. - ▶ Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. - ▶ Aromatics can react exothermically with bases and with diazo compounds. #### For alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. #### Storage incompatibility - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. - ▶ Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides. - ► Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. - ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. - ▶ Microwave conditions give improved yields of the oxidation products. - ▶ Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 #### 7.3. Specific end use(s) See section 1.2 ## **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** ## 8.1. Control parameters #### DERIVED NO EFFECT LEVEL (DNEL) Not Available #### PREDICTED NO EFFECT LEVEL (PNEC) Not Available #### OCCUPATIONAL EXPOSURE LIMITS (OEL) ## INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak |
Notes | |--|----------------------------|-----------------------------------|--------------------------|--------------------------|------------------|------------------| | UK Workplace Exposure Limits (WELs) | n-hexane | n-Hexane | 72 mg/m3 / 20 ppm | Not Available | Not
Available | Not
Available | | European Union (EU) Commission Directive 2006/15/EC establishing a second list of indicative occupational exposure limit values (IOELVs) | n-hexane | n-Hexane | 72 mg/m3 / 20 ppm | Not Available | Not
Available | Not
Available | | EU Consolidated List of Indicative
Occupational Exposure Limit
Values (IOELVs) | n-hexane | n-Hexane | 72 mg/m3 / 20 ppm | Not Available | Not
Available | Not
Available | | European Union (EU) First List of
Indicative Occupational Exposure
Limit Values (IOELVs) (English) | xylene | Xylene, mixed isomers, pure | 221 mg/m3 / 50 ppm | 442 mg/m3 / 100 ppm | Not
Available | Skin | | UK Workplace Exposure Limits (WELs) | xylene | Xylene, o-,m-,p- or mixed isomers | 220 mg/m3 / 50 ppm | 441 mg/m3 / 100 ppm | Not
Available | Sk, BMGV | | EU Consolidated List of Indicative
Occupational Exposure Limit
Values (IOELVs) | xylene | Xylene (mixed isomers, pure) | 221 mg/m3 / 50 ppm | 442 mg/m3 / 100 ppm | Not
Available | Skin | | European Union (EU) First List of
Indicative Occupational Exposure
Limit Values (IOELVs) (English) | acetone | Acetone | 1 210 mg/m3 / 500
ppm | Not Available | Not
Available | Not
Available | | UK Workplace Exposure Limits (WELs) | acetone | Acetone | 1210 mg/m3 / 500 ppm | 3620 mg/m3 / 1500
ppm | Not
Available | Not
Available | | EU Consolidated List of Indicative
Occupational Exposure Limit
Values (IOELVs) | acetone | Acetone | 1210 mg/m3 / 500 ppm | Not Available | Not
Available | Not
Available | | European Union (EU) First List of
Indicative Occupational Exposure
Limit Values (IOELVs) (English) | ethylbenzene | Ethylbenzene | 442 mg/m3 / 100 ppm | 884 mg/m3 / 200 ppm | Not
Available | Skin | | UK Workplace Exposure Limits (WELs) | ethylbenzene | Ethylbenzene | 441 mg/m3 / 100 ppm | 552 mg/m3 / 125 ppm | Not
Available | Sk | | EU Consolidated List of Indicative
Occupational Exposure Limit
Values (IOELVs) | ethylbenzene | Ethyl benzene | 442 mg/m3 / 100 ppm | 884 mg/m3 / 200 ppm | Not
Available | Skin | | UK Workplace Exposure Limits (WELs) | silica amorphous,
fumed | Silica, amorphous inhalable dust | 6 mg/m3 | Not Available | Not
Available | Not
Available | | UK Workplace Exposure Limits (WELs) | silica amorphous,
fumed | Silica, respirable crystalline | 0.1 mg/m3 | Not Available | Not
Available | Not
Available | |-------------------------------------|----------------------------|-----------------------------------|------------|---------------|------------------|------------------| | UK Workplace Exposure Limits (WELs) | silica amorphous,
fumed | Silica, amorphous respirable dust | 2.4 mg/m3 | Not Available | Not
Available | Not
Available | | UK Workplace Exposure Limits (WELs) | silica amorphous,
fumed | Silica, fused respirable dust | 0.08 mg/m3 | Not Available | Not
Available | Not
Available | | UK Workplace Exposure Limits (WELs) | carbon black | Carbon black | 3.5 mg/m3 | 7 mg/m3 | Not
Available | Not
Available | #### EMERGENCY LIMITS | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-------------------------|-------------------------|---------------|---------------|---------------| | n-hexane | Hexane | 260 ppm | Not Available | Not Available | | xylene | Xylenes | Not Available | Not Available | Not Available | | acetone | Acetone | Not Available | Not Available | Not Available | | ethylbenzene | Ethyl benzene | Not Available | Not Available | Not Available | | silica amorphous, fumed | Silica, amorphous fumed | 18 mg/m3 | 100 mg/m3 | 630 mg/m3 | | carbon black | Carbon black | 9 mg/m3 | 99 mg/m3 | 590 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--|-----------------|---------------| | solvent naphtha petroleum, light aliphatic | 2500 mg/m3 | Not Available | | n-hexane | 1,100 [LEL] ppm | Not Available | | xylene | 900 ppm | Not Available | | acetone | 2,500 [LEL] ppm | Not Available | | ethylbenzene | 800 [LEL] ppm | Not Available | | silica amorphous, fumed | 3000 mg/m3 | Not Available | | carbon black | 1750 mg/m3 | Not Available | #### MATERIAL DATA Odour Threshold Value: 3.6 ppm (detection), 699 ppm (recognition) Saturation vapour concentration: 237000 ppm @ 20 C NOTE: Detector tubes measuring in excess of 40 ppm, are available. Exposure at or below the recommended TLV-TWA is thought to protect the worker against mild irritation associated with brief exposures and the bioaccumulation, chronic irritation of the respiratory tract and headaches associated with long-term acetone exposures. The NIOSH REL-TWA is substantially lower and has taken into account slight irritation experienced by volunteer subjects at 300 ppm. Mild irritation to acclimatised workers begins at about 750 ppm - unacclimatised subjects will experience irritation at about 350-500 ppm but acclimatisation can occur rapidly. Disagreement between the peak bodies is based largely on the view by ACGIH that widespread use of acetone, without evidence of significant adverse health effects at higher concentrations, allows acceptance of a higher limit. Half-life of acetone in blood is 3 hours which means that no adjustment for shift-length has to be made with reference to the standard 8 hour/day, 40 hours per week because body clearance occurs within any shift with low potential for accumulation. A STEL has been established to prevent excursions of acetone vapours that could cause depression of the central nervous system. Odour Safety Factor(OSF) OSF=38 (ACETONE) #### for benzene Odour Threshold Value: 34 ppm (detection), 97 ppm (recognition) NOTE: Detector tubes for benzene, measuring in excess of 0.5 ppm, are commercially available. The relative quality of epidemiological data and quantitative health risk assessments related to documented and theoretical leukaemic deaths constitute the basis of the TLV-recommendation. One study [Dow Chemical] demonstrates a significant fourfold increase in myelogenous leukaemia for workers exposed to average benzene concentrations of about 5 ppm for an average of 9 years and that 2 out of four individuals in the study who died from leukaemia were characterised as having been exposed to average benzene levels below 2 ppm. Based on such findings the estimated risk of leukaemia in workers exposed at daily benzene concentrations of 10 ppm for 40 years is 155 times that of unexposed workers; at 1 ppm the risk falls to 1.7 times whilst at 0.1 ppm the risk is about the same in the two groups. A revision of the TLV-TWA to 0.1 ppm was proposed in 1990 but this has been revised upwards as result of industry initiatives. - Typical toxicities displayed following inhalation: ► At 25 ppm (8 hours): no effect - 50-150 ppm: signs of intoxication within 5 hours - ▶ 500-1500 ppm: signs of intoxication within 1 hour - 7500 ppm: severe intoxication within 30-60 minutes - ▶ 20000 ppm: fatal within 5-10 minutes Some jurisdictions require that health surveillance be conducted on occupationally exposed workers. Some surveillance should emphasise (i) demography, occupational and medical history and health advice (ii) baseline blood sample for haematological profile (iii) records of personal exposure. For amorphous crystalline silica (precipitated silicic acid): Amorphous crystalline silica shows little potential for producing adverse effects on the lung and exposure standards should reflect a particulate of low intrinsic toxicity. Mixtures of amorphous silicas/ diatomaceous earth and crystalline silica should be monitored as if they comprise only the crystalline forms. The dusts from precipitated silica and silica gel produce little adverse effect on pulmonary functions and are not known to produce significant disease or toxic effect. IARC has classified silica, amorphous as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. For n-hexane: Odour Threshold Value: 65 ppm NOTE: Detector tubes for n-hexane, measuring in excess of 100 ppm, are available commercially. Occupational polyneuropathy may result from exposures as low as 500 ppm (as hexane), whilst nearly continuous exposures of 250 ppm have caused neurotoxic effects in animals. Many literature reports have failed to distinguish hexane from n-hexane and on the assumption that the commercial hexane contains 30% n-hexane, a worst case recommendation for TLV is assumed to reduce the risk of peripheral neuropathies (due to the metabolites 2,5-heptanedione and 3,6-octanedione) and other adverse neuropathic effects. Concurrent exposure to chemicals (including MEK) and drugs which induce hepatic liver oxidative metabolism can reduce the time for neuropathy to appear. Odour Safety Factor(OSF) OSF=0.15 (n-HEXANE) #### for xylenes: IDLH Level: 900 ppm Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition) NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response) Xvlene vapour is an irritant to the eves, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce intoxication and unconsciousness also produces transient liver and kidney toxicity. Neurologic impairment is NOT evident amongst volunteers inhaling up to 400 ppm though complaints of ocular and upper respiratory tract irritation occur at 200 ppm for 3 to 5 minutes Exposure to xylene at or below the recommended
TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An earlier skin notation was deleted because percutaneous absorption is gradual and protracted and does not substantially contribute to the dose received by inhalation. Odour Safety Factor(OSF) OSF=4 (XYLENE) for ethyl benzene: Odour Threshold Value: 0.46-0.60 ppm NOTE: Detector tubes for ethylbenzene, measuring in excess of 30 ppm, are commercially available. Ethyl benzene produces irritation of the skin and mucous membranes and appears to produce acute and chronic effects on the central nervous system. Animal experiments also suggest the effects of chronic exposure include damage to the liver, kidneys and testes. In spite of structural similarities to benzene, the material does not appear to cause damage to the haemopoietic system. The TLV-TWA is thought to be protective against skin and eye irritation. Exposure at this concentration probably will not result in systemic effects. Subjects exposed at 200 ppm experienced transient irritation of the eyes; at 1000 ppm there was eye irritation with profuse lachrymation; at 2000 ppm eye irritation and lachrymation were immediate and severe accompanied by moderate nasal irritation, constriction in the chest and vertigo; at 5000 ppm exposure produced intolerable irritation of the eyes and throat. Odour Safety Factor(OSF) OSF=43 (ETHYL BENZENE) NOTE M: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.005% w/w benzo[a]pyrene (EINECS No 200-028-5). This note applies only to certain complex oil-derived substances in Annex IV. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP #### 8.2. Exposure controls CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. ## 8.2.1. Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used #### 8.2.2. Personal protection - Safety glasses with side shields. - Chemical goggles ## Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands ▶ thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact. - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where
there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. #### **Body protection** Hands/feet protection #### See Other protection below #### Overalls - PVC Apron - PVC protective suit may be required if exposure severe. - Eyewash unit. - ▶ Ensure there is ready access to a safety shower. #### Other protection - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. # Thermal hazards Not Available ## Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the computergenerated selection: 4229 Connector Coating | Material | СРІ | |-------------------|-----| | TEFLON | В | | BUTYL | С | | BUTYL/NEOPRENE | С | | CPE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | PVDC/PE/PVDC | С | #### Respiratory protection Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum
protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |---------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS / Class | - | | | | 1 | | | up to 50 | 1000 | - | A-AUS / Class | | | | | 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | - | Airline** | - * Continuous Flow - ** Continuous-flow or positive pressure demand. A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C) | SARANEX-23 | С | |-------------------|---| | SARANEX-23 2-PLY | С | | VITON | С | | VITON/CHLOROBUTYL | С | | VITON/NEOPRENE | С | ^{*} CPI - Chemwatch Performance Index **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - #### 8.2.3. Environmental exposure controls See section 12 ## **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ## 9.1. Information on basic physical and chemical properties | Appearance | black | | | |--|-------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 0.83 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 3970 | | Initial boiling point and boiling range (°C) | >55 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | -19.5 | Taste | Not Available | | Evaporation rate | >1 BuAC = 1 | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 9 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | 25 | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | >2 | VOC g/L | Not Available | # 9.2. Other information Not Available ## **SECTION 10 STABILITY AND REACTIVITY** | 10.1.Reactivity | See section 7.2 | |--|--| | 10.2. Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | 10.3. Possibility of hazardous reactions | See section 7.2 | | 10.4. Conditions to avoid | See section 7.2 | | 10.5. Incompatible materials | See section 7.2 | | 10.6. Hazardous decomposition products | See section 5.3 | ## **SECTION 11 TOXICOLOGICAL INFORMATION** ## 11.1. Information on toxicological effects Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. #### Inhaled Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion ^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics. Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced. Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exoosures). It is likely that acute inhalation exoosure to alkylbenzenes resembles that to general anaesthetics. Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary
confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue. Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Accidental ingestion of the material may be damaging to the health of the individual. # Ingestion Chronic inhalation or skin exposure to n-hexane may cause peripheral neuropathy, which is damage to nerve ends in extremities, e.g. fingers, with loss of sensation and characteristic thickening. Nerve damage has been documented with chronic exposures of greater than 500 ppm. Improvement in condition does not immediately follow removal from exposure and symptoms may progress for two or three months. Recovery may take a year or more depending on severity of exposure, and may not always be complete. Exposure to n-hexane with methyl ethyl ketone (MEK) will accelerate the appearance of damage, but MEK alone will not cause the nerve damage. Other isomers of hexane do not cause nerve damage. [Source: Shell Co.] Skin contact with the material may be harmful; systemic effects may result following absorption. #### Skin Contact Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. ## Eye Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. $\label{thm:lambda} \textit{Harmful: danger of serious damage to health by prolonged exposure through inhalation.}$ Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Exposure to the material may cause concerns for human fertility, generally on the basis that results in animal studies provide sufficient evidence to cause a strong suspicion of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. # Chronic Chronic inhalation or skin exposure to n-hexane may cause peripheral neuropathy, which is damage to nerve ends in extremities, e.g. fingers, with loss of sensation and characteristic thickening. Nerve damage has been documented with chronic exposures of greater than 500 ppm. Improvement in condition does not immediately follow removal from exposure and symptoms may progress for two or three months. Recovery may take a year or more depending on severity of exposure, and may not always be complete. Exposure to n-hexane with methyl ethyl ketone (MEK) will accelerate the appearance of damage, but MEK alone will not cause the nerve damage. Other isomers of hexane do not cause nerve damage. [Source: Shell Co.] Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Xylene has been classed as a developmental toxin in some jurisdictions. Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex. #### Continued... Chronic exposure to benzene may cause headache, fatigue, loss of appetite and lassitude with incipient blood effects including anaemia and blood changes. Benzene is a myelotoxicant known to suppress bone- marrow cell proliferation and to induce haematologic disorders in humans and animals. Signs of benzene-induced aplastic anaemia include suppression of leukocytes (leukopenia), red cells (anaemia), platelets (thrombocytopenia) or all three cell types (pancytopenia). Classic symptoms include weakness, purpura, and haemorrhage. The most significant toxic effect is insidious and often reversible injury to the blood forming tissue. Leukaemia may develop. Occupational exposures have shown a relationship between exposure to benzene and production of myelogenous leukaemia. There may also be a relationship between benzene exposure and the production of lymphoma and multiple myeloma. In chronic exposure, workers exhibit signs of central nervous system lesions and impairment of hearing. Benzene haemotoxicity and leukaemogenicity involve metabolism, growth factor regulation, oxidative stress, DNA damage, cell regulation, and apoptosis. (Yoon et al Environmental Health Perspectives, 111, pp 1411-1420, 2003) Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure
to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. | | constituents and skirr cancer, particularly metanionia. Other studies have been | diable to o | orinini uno iniding. | | | |---|---|----------------------------|----------------------|------------------|--| | 4229 Connector Coating | TOXICITY Not A validable | IRRITATIO | | | | | | Not Available | Not Availa | ble | | | | | TOXICITY | | | IRRITATION | | | solvent naphtha petroleum,
light aliphatic | Dermal (rabbit) LD50: >1900 mg/kg ^[1] | | | Not Available | | | . | Oral (rat) LD50: >4500 mg/kg ^[1] | | | | | | | | | | | | | | TOXICITY | | IRRITATI | ON | | | | Dermal (rabbit) LD50: >2000 mg/kg ^[1] Eye(rabbit): | | | t): 10 mg - mild | | | n-hexane | Inhalation (rat) LC50: 47945.232 mg/l/4H ^[2] | | | | | | | Oral (rat) LD50: 28710 mg/kg ^[2] | | | | | | | | | | | | | | TOXICITY | IRR | RITATION | | | | | Dermal (rabbit) LD50: >1700 mg/kg ^[2] | Eye | (human): 200 ppm | irritant | | | xylene | Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2] | Eye | (rabbit): 5 mg/24h | SEVERE | | | | Oral (rat) LD50: 4300 mg/kg ^[2] Eye (rabbit): 87 mg mile | | ld | | | | | Skin (rabbit):500 mg/24 | | | 4h moderate | | | | | | | | | | | TOXICITY | DXICITY IRRITATION | | | | | | Dermal (rabbit) LD50: 20000 mg/kg ^[2] | Eye (h | numan): 500 ppm - | irritant | | | acetone | Inhalation (rat) LC50: 100.2 mg/l/8hr ^[2] | Eye (r | abbit): 20mg/24hr - | moderate | | | accione | Oral (rat) LD50: 5800 mg/kg ^[2] | Eye (r | abbit): 3.95 mg - SI | EVERE | | | | | Skin (rabbit): 500 mg/24hr | | | | | | Skin (rabbit):395mg (open) - mild | | | | | | | | | | | | | | TOXICITY | | IRRITATION | | | | ethylbenzene | Dermal (rabbit) LD50: >5000 mg/kg ^[2] | | | mg - SEVERE | | | · | Inhalation (mouse) LC50: 17.75 mg/l/2H ^[2] | | Skin (rabbit): 15 mo | g/24h mild | | | | Oral (rat) LD50: 3500 mg/kg ^[2] | | | | | | | | | | | | | silica amorphous, fumed | | | | IRRITATION | | | | Oral (rat) LD50: >5000 mg/kg ^[2] | | | Not Available | | | | | | | | | | | TOXICITY | | | IRRITATION | | | carbon black | Dermal (rabbit) LD50: >3000 mg/kg ^[2] | | | Not Available | | | | Oral (rat) LD50: >10000 mg/kg ^[1] | | | | | | | | | | | | 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Legend: #### for acetone: # ACETONE The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitiser but is a defatting agent to the skin. Acetone is an eye irritant. The subchronic toxicity of acetone has been examined in mice and rats that were administered acetone in the drinking water and again in rats treated by oral gavage. Acetone-induced increases in relative kidney weight changes were observed in male and female rats used in the oral 13-week study. Acetone treatment caused increases in the relative liver weight in male and female rats that were not associated with histopathologic effects and the effects may have been associated with microsomal enzyme induction. Haematologic effects consistent with macrocytic anaemia were also noted in male rats along with hyperpigmentation in the spleen. The most notable findings in the mice were increased liver and decreased spleen weights. Overall, the no-observed-effect-levels in the drinking water study were 1% for male rats (900 mg/kg/d) and male mice (2258 mg/kg/d), 2% for female mice (5945 mg/kg/d), and 5% for female rats (3100 mg/kg/d). For developmental effects, a statistically significant reduction in foetal weight, and a slight, but statistically significant increase in the percent incidence of later resorptions were seen in mice at 15,665 mg/m3 and in rats at 26,100 mg/m3. The no-observable-effect level for developmental toxicity was determined to be 5220 mg/m3 for both rats and mice. Teratogenic effects were not observed in rats and mice tested at 26,110 and 15,665 mg/m3, respectively. Lifetime dermal carcinogenicity studies in mice treated with up to 0.2 mL of acetone did not reveal any increase in organ tumor incidence relative to untreated control animals. The scientific literature contains many different studies that have measured either the neurobehavioural performance or neurophysiological response of humans exposed to acetone. Effect levels ranging from about 600 to greater than 2375 mg/m3 have been reported. Neurobehavioral studies with acetone-exposed employees have recently shown that 8-hr exposures in excess of 2375 mg/m3 were not associated with any dose-related changes in response time, vigilance, or digit span scores. Clinical case studies, controlled human volunteer studies, animal research, and occupational field evaluations all indicate that the NOAEL for this effect is 2375 mg/m3 or greater. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. Ethylbenzene is readily absorbed following inhalation, oral, and dermal exposures, distributed throughout the body, and excreted primarily through urine. There are two different metabolic pathways for ethylbenzene with the primary pathway being the alpha-oxidation of ethylbenzene to 1-phenylethanol, mostly as the R-enantiomer. The pattern of urinary metabolite excretion varies with different mammalian species. In humans, ethylbenzene is excreted in the urine as mandelic acid and phenylgloxylic acids; whereas rats and rabbits excrete hippuric acid and phenaceturic acid as the main metabolites. Ethylbenzene can induce liver enzymes and hence its own metabolism as well as the metabolism of other substances. Ethylbenzene has a low order of acute toxicity by the oral, dermal or inhalation routes of exposure. Studies in rabbits indicate that ethylbenzene is irritating to the skin and eyes. There are numerous repeat dose studies available in a variety of species, these include: rats, mice, rabbits, guinea pig and rhesus monkeys. #### ETHYLBENZENE Hearing loss has been reported in rats (but not guinea pigs) exposed to relatively high exposures (400 ppm and greater) of ethylbenzene In chronic toxicity/carcinogenicity studies, both rats and mice were exposed via inhalation to 0, 75, 250 or 750 ppm for 104 weeks. In rats, the kidney was the target organ of toxicity, with renal tubular hyperplasia noted in both males and females at the 750 ppm level only. In mice, the liver and lung were the principal target organs of toxicity. In male mice at 750 ppm, lung toxicity was described as alveolar epithelial metaplasia, and liver toxicity was described as hepatocellular syncitial alteration, hypertrophy and mild necrosis; this was accompanied by increased follicular cell hyperplasia in the thyroid. As a result the NOAEL in male mice was determined to be 250 ppm. In female mice, the 750 ppm dose group had an increased incidence of eosinophilic foci in the liver (44% vs 10% in the controls) and an increased incidence in follicular cell hyperplasia in the thyroid gland. In studies conducted by the U.S. National Toxicology Program, inhalation of ethylbenzene at 750 ppm resulted in increased lung tumors in male mice, liver tumors in female mice, and increased kidney tumors in male and female rats. No increase in tumors was reported at 75 or 250 ppm. Ethylbenzene is considered to be an animal carcinogen, however, the relevance of these findings to humans is currently unknown. Although no reproductive toxicity studies have been conducted on ethylbenzene, repeated-dose studies indicate that the reproductive organs are not a target for ethylbenzene toxicity Ethylbenzene was negative in bacterial gene mutation tests and in a yeast assay on mitotic recombination. NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. Liver changes, utheral tract, effects on fertility, foetotoxicity, specific developmental abnormalities (musculoskeletal system) recorded. #### For silica amorphous: When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals. After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification. Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute
intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eve irritant, and it is not a sensitiser. Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact. Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure. Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL. Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected. In humans, SAS is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin. There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS. For silane, dichlorodimethyl-, reaction products with silica Acute oral toxicity is very low for treated silica. Acute inhalation toxicity was only tested for inhalable particles and is not relevant for the material used industrially. Changes in respiratory organs (inflammatory processes) after repeated exposure were reversible in animals that survived the exposure and were observed above the valid TLV values, only. If TLV values are maintained no health hazards are expected. Repeated dose toxicity is sufficiently investigated. Treated silica is not mutagenic. The NOAEL for repro/developmental toxicity is 500 mg/kg bw. Acute toxicity: In a limit test giving 10% in the diet (5000 mg/kg bw) to rats the acute oral LD50 was determined to be higher than 5000 mg/kg bw. In another study administering single doses of 2500 and 5000 mg/kg bw to rats the LD50 was also concluded to be higher than 5000 mg/kg bw. In an acute oral toxicity study giving still higher single doses in olive oil the LD50 appeared to be above 7900 mg/kg bw. No signs of toxicity were observed in any of these studies. All inhalation testing has been conducted with a substance that differs significantly from the commercial product based on particle size. In these animal tests the experimental design caused the particle size to be reduced resulting in nearly 100% of the particle fraction being below 10 um and capable of entering the deep lung (alveolar particle fraction). The alveolar fraction is responsible for the toxicological effects (suffocation; overloading of the lung due to poor dust clearance mechanisms) which were observed with LC50 values of > 477, 450, 520-1120, and >2280 mg/m3 and corresponding mass median # SILICA AMORPHOUS, FUMED aerodynamic diameters (MMAD) of 2.9 um. 1.24 um. 0.8 – 0.9 um and 0.15 um. respectively. In comparison to the particle size used in these acute inhalation animal tests, only minor amounts (less than 1 %) of the commercially available commercial substance have been measured as respirable (alveolar fraction < 10 um MMAD) using test method EN/DIN 481 (ref.35). Using the same method > 99% of the particle fraction is in excess of 90 um and can only reach the upper airways (nasal passages and throat) or cannot be inhaled at all. Therefore the tests do not represent the toxicological behavior of the commercial product and are not considered relevant for inclusion in the hazard definition/hazard assessment of the commercial substance. Genetic toxicity: The test substance was not mutagenic in the Bacterial Reverse Mutation Assay (Ames test) with Salmonella typhimunium TA98. TA100. TA1535, TA1537 and TA1538 strains and with E. coli WP2 uvrA strain. Also an in vitro chromosomal aberration study in CHO cells gave negative results. Repeat dose toxicity: A 24-month oral feeding study administering a 100 mg/kg dose to 20 male and 20 female rats resulted in a NOAEL of 100 mg/kg. No clinical signs or treatment-related changes (e.g. bodyweight) were observed. There were no carcinogenic effects. A 6-month oral feeding study showed no treatment-related effects at the given dose of 500 mg/kg bw to rats (40/sex) resulting in a NOAEL of 500 mg/kg bw; a slight progressive – but reversible -transformation of the adrenal cortex in females was attributed to chronic stress. Another oral feeding study (5-8 weeks) exposed rats (5/sex/treatment) to a dose of 500, 1000 or 2000 mg/kg bw initially and increasing these doses gradually to 4000, 8000 and 16000 mg/kg bw, respectively. Decrease in body weight and food consumption combined with apathy and decreased grooming activity and decreased cytoplasmic glycogen in hepatocytes may indicate a starving condition of these animals. At the highest dose group four animals died. The NOAEL was determined to be 500 mg/kg bw (LOAEL = 1000 mg/kg bw). In a limited reported study where a dose of 500 or 1000 mg/kg bw was administered by gavage to 30 rats no treatment-related effects could be found, resulting in a NOAEL of 1000 mg/kg bw. A 13-week inhalation study exposing 70 animals/sex to 35 mg/m3 resulted in granuloma-like lesions of the lungs, accumulations of alveolar macrophages, alveolar spaces filled with granular material, debris and polymorphonuclear leucocytes, alveolar bronchiolisation, interstitial fibrosis and enlarged mediastinal lymph nodes. In a 2-week study administering 0, 31, 87 or 420 mg/m3 to a total number of 40 rats/sex 4 males and 2 females died at the top dose level. The rats at the top dose level showed severe respiratory distress and apathy. A dose-related decrease in body weight was observed at 87 mg/m3 and higher. The lungs showed similar effects as those observed in the 13-week inhalation study. A 3-day study and an 8-12-month study both with a concentration of 50 mg/m3 to rats yielded similar results to the above studies in the lungs and the size of the particles was determined to be smaller than 7 µm. Changes in respiratory organs (inflammatory processes) observed in inhalative repeated dose toxicity testing were reversible in animals that survived the exposure. There was no indication of silicosis. Concentrations of the substances with toxicological effects in inhalative toxicity testing were above the valid TLV values (10mg/m3 USA). If TLV values are maintained no health hazards are expected. Reproductive and developmental toxicity: Two studies are included on repro/developmental toxicity. A 6-month, 1-generation study in rats combining fertility and prenatal toxicity testing administered 500 mg/kg bw in the food to 10 females and 2 males. No treatment-related effects were observed in the parents or in the offspring. Therefore the NOAEL for parents and offspring was 500 mg/kg. No effects on the female/male gonads were observed. In a 2-generation reproduction study 20 male and 20 female rats were given 100 mg/kg bw via oral feed for 24 months (see also repeated dose). No abnormalities were observed in the offspring resulting in a NOAEL of 100 mg/kg bw. #### **ACETONE & ETHYLBENZENE** The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. | Acute Toxicity | 0 | Carcinogenicity | ✓ | |-----------------------------------|---|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | 0 | STOT - Repeated Exposure | ✓ | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: X - Data available but does not fill the criteria for classification — Data available to make classification ## **SECTION 12 ECOLOGICAL INFORMATION** ### 12.1. Toxicity | 4000 Cannantan Cantina | ENDPOINT | TEST DI | TEST DURATION (HR) SPE | | SPECIES | VALUE | | SOURCE | |--|---------------|-----------|------------------------|-------------------------------|-----------------------|---------------|-------------|---------------| | 4229 Connector Coating | Not Available | Not Avail | able | | Not Available | Not Availa | able | Not Available | | | ENDPOINT | TEST DURA | TION (HR) | SPECIES | 1 | | VALUE | SOURCE | | olvent naphtha petroleum,
light aliphatic | EC50 | 72 | | Algae or o | other aquatic plants | | =6.5mg/L | 1 | | iigiit aiipiiatic | NOEC | 72 | | Algae or o | other aquatic plants | | <0.1mg < d> | 1 | | | ENDPOINT | TEST D | URATION (HR) | | SPECIES | VALUE | |
SOURCE | | n-hexane | LC50 | 96 | | | Fish | 2.5mg/L | | 4 | | | EC50 | 48 | | Crustacea | 3877.65 | 3877.65mg/L 4 | | | | | ENDPOINT | TEST DURA | ATION (HP) | SPECII | =6 | | VALUE | SOURCE | | | LC50 | 96 | | Fish | | 2.6mg/L | 2 | | | xylene | EC50 | 48 | | Crustao | cea | | >3.4mg/L | 2 | | , , , | EC50 | 72 | | Algae or other aquatic plants | | 4.6mg/L | 2 | | | | NOEC | 73 | | Algae o | or other aquatic plan | ts | 0.44mg/L | 2 | | | | | | | | | | | | | ENDPOINT | TEST DURA | TION (HR) | SPECIE | S | | VALUE | SOURCE | | acetone | LC50 | 96 | | Fish | | >100mg/L | 4 | | | | EC50 | 48 | | Crustace | a | | >100mg/L | 4 | | | EC50 | 96 | | Algae or | other aquatic plants | 3 | 20.565mg/L | 4 | #### Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water Oils of any kind can cause: - rowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility - lethal effects on fish by coating gill surfaces, preventing respiration - ▶ asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and - ▶ adverse aesthetic effects of fouled shoreline and beaches In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation. Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene. The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound. Anthrocene is a phototoxic PAH . UV light greatly increases the toxicity of anthracene to bluegill sunfish. . Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not. For xylenes : log Koc : 2.05-3.08 Koc : 25.4-204 Half-life (hr) air : 0.24-42 Half-life (hr) H2O surface water : 24-672 Half-life (hr) H2O ground : 336-8640 Half-life (hr) soil : 52-672 Henry's Pa m3 /mol: 637-879 Henry's atm m3 /mol: 7.68E-03 BOD 5 if unstated: 1.4,1% COD : 2.56,13% ThOD: 3.125 BCF: 23 log BCF: 1.17-2.41 Environmental Fate Terrestrial fate:: Measured Koc values of 166 and 182, indicate that 3-xylene is expected to have moderate mobility in soil. Volatilisation of p-xylene is expected to be important from moist soil surfaces given a measured Henry's Law constant of 7.18x10-3 atm-cu m/mole. The potential for volatilisation of 3-xylene from dry soil surfaces may exist based on a measured vapor pressure of 8.29 mm Hg. p-Xylene may be degraded during its passage through soil). The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. p-Xylene, present in soil samples contaminated with jet fuel, was completely degraded aerobically within 5 days. In aquifer studies under anaerobic conditions, p-xylene was degraded, usually within several weeks, with the production of 3-methylbenzylfumaric acid, 3-methylbenzylsuccinic acid, 3-methylbenzoate, and 3-methylbenzaldehyde as metabolites. Aquatic fate: Koc values indicate that p-xylene may adsorb to suspended solids and sediment in water. p-Xylene is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. BCF values of 14.8, 23.4, and 6, measured in goldfish, eels, and clams, respectively, indicate that bioconcentration in aquatic organisms is low. p-Xylene in water with added humic substances was 50% degraded following 3 hours irradiation suggesting that indirect photooxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. Although p-xylene is biodegradable and has been observed to degrade in pond water, there are insufficient data to assess the rate of this process in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater in several studies; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. #### Atmospheric fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere primarily by reaction with photochemically-produced hydroxyl radicals, with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylenes' susceptibility to photochemical oxidation in the troposphere is to the extent that they may contribute to photochemical smog formation. According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and from its vapour pressure, p-xylene, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase p-xylene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 16 hours. A half-life of 1.0 hr in summer and 10 hr in winter was measured for the reaction of p-xylene with photochemically-produced hydroxyl radicals. p-xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers, with loss rates varying from 9-42% per hr. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol. ## Ecotoxicity: for xylenes Fish LC50 (96 h) Pimephales promelas 13.4 mg/l; Oncorhyncus mykiss 8.05 mg/l; Lepomis macrochirus 16.1 mg/l (all flow through values); Pimephales promelas 26.7 (static) Daphnia EC50 948 h): 3.83 mg/l Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/l Gammarus lacustris LC50 (48 h): 0.6 mg/l For n-hexane: log Kow: 3.17-3.94 BOD 5 if unstated: 2.21 COD: 0.04 ThOD: 3.52 #### Environmental fate: **Transport and Partitioning:** The physical properties of *n*-hexane that affect its transport and partitioning in the environment are: water solubility of 9.5 mg/L; log[Kow] (octanol/water partition coefficient), estimated as 3.29; Henry's law constant, 1.69 atm-m3 mol; vapor pressure, 150 mm Hg at 25 C; and log[Koc] in the range of 2.90 to 3.61. As with many alkanes, experimental methods for the estimation of the Koc parameter are lacking, so that estimates must be made based on theoretical considerations. The dominant transport process from water is volatilization. Based on mathematical models the half-life for *n*-hexane in bodies of water with any degree of turbulent mixing (e.g., rivers) would be less than 3 hours. For standing bodies of water (e.g. small ponds), a half-life no longer than one week (6.8 days) is estimated Based on the log octanol/water partition coefficient (i.e. log[Koc]) and the estimated log sorption coefficient (i.e. log[Koc]) *n*-hexane is not expected to become concentrated in biota. A calculated bioconcentration factor (BCF) of 453 for a fathead minnow further suggests a low potential for *n*-hexane to bioconcentrate or bioaccumulate in trophic food chains. In soil, the dominant transport mechanism for *n*-hexane present near the surface probably is volatilisation (based on its Henry's law constant, water solubility, vapor pressure, and Koc). While its estimated Koc values suggest a moderate ability to sorb to soil particles, *n*-hexane has a density (0.6603 g/mL at 20 C) well below that of water and a very low water solubility of 9.5 mg/L. *n*-Hexane would, therefore, be viewed as a light nonaqueous phase liquid (LNAPL), which would suggest a low potential for leaching into the lower soil depths since the *n*-hexane would tend to float on the top of the saturated zone of the water table. *n*-Hexane would generally stay near the soil surface
and, if not appreciably sorbed into the soil matrix, would be expected eventually to volatilise to the atmosphere. Exceptions would involve locations with shallow groundwater tables where there were large spills of hexane products. In such cases, the *n*-hexane could spread out to contaminant a large volume of soil materials. Air: n-Hexane does not absorb ultraviolet (UV) light at 290 nm and is thus not expected to undergo direct photolysis reactions. The dominant tropospheric removal mechanism for n-hexane is generally regarded to be decomposition by hydroxyl radicals. Calculations assuming typical hydroxyl radical concentrations suggest a half-life of approximately 2.9 days. While n-hexane can react with nitrogen oxides to produce ozone precursors under controlled laboratory conditions, the smog-producing potential of n-hexane is very low compared to that of other alkanes or chlorinated VOCs. Hydroxyl ion reactions in the upper troposphere, therefore, are probably the primary mechanisms for n-hexane degradation in the atmosphere. As with most alkanes, n-hexane is resistant to hydrolysis Water: Although few data are available dealing explicitly with the biodegradation of *n*-hexane in water, neither hydrolysis nor biodegradation in surface waters appears to be rapid compared with volatilization. In surface waters, as in the atmosphere, alkanes such as *n*-hexane would be resistant to hydrolysis. Biodegradation is probably the most significant degradation mechanism in groundwater. The ability of *Pseudomonas mendocina* bacteria to metabolise *n*-hexane in laboratory microcosms simulating groundwater conditions has been documented. Mixed bacterial cultures as well as pure cultures are documented as capable of metabolizing *n*-hexane under aerobic conditions. In general, linear alkanes (such as *n*-hexane) are viewed as the most readily biodegradable fractions in petroleum, particularly when oxygen is present in solution. Once introduced into groundwater, *n*-hexane may be fairly persistent since its degradation by chemical hydrolysis is slow and opportunities for biodegradation may be limited under anoxic conditions or where nutrients such as nitrogen or phosphorus are in limited supply. **Sediment and Soil:** The most important biodegradation processes involve the conversion of the *n*-hexane to primary alcohols, aldehydes and, ultimately, into fatty acids. Similar processes are encountered with other light hydrocarbons such as heptane. In general, unless the *n*-hexane is buried at some depth within a soil or sediment, volatilisation is generally assumed to occur at a much more rapid rate than chemical or biochemical degradation processes. Once introduced into deeper sediments, *n*-hexane may be fairly persistent. #### Ecotoxicity: Fish LC50 (96 h): Oncorhyncus mykiss 4.14 mg/l; Pimephales promelus 2.5 mg/l (flow through); Lepomis macrochirus 4.12 mg/l; Daphnia EC50 (48 h): 3.87 mg/l for acetone: log Kow: -0.24 Half-life (hr) air: 312-1896 Half-life (hr) H2O surface water: 20 Henry's atm m3 /moi: 3.67E-05 BOD 5: 0.31-1.76,46-55% COD: 1.12-2.07 #### ThOD: 2.2 BCF: 0.69 #### **Environmental fate:** Acetone preferentially locates in the air compartment when released to the environment. A substantial amount of acetone can also be found in water, which is consistent with the high water to air partition coefficient and its small, but detectable, presence in rain water, sea water, and lake water samples. Very little acetone is expected to reside in soil, biota, or suspended solids. This is entirely consistent with the physical and chemical properties of acetone and with measurements showing a low propensity for soil absorption and a high preference for moving through the soil and into the ground water In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days. The relatively long half-life allows acetone to be transported long distances from its emission source. Acetone is highly soluble and slightly persistent in water, with a half-life of about 20 hours; it is minimally toxic to aquatic life. Acetone released to soil volatilises although some may leach into the ground where it rapidly biodegrades. Acetone does not concentrate in the food chain. Acetone meets the OECD definition of readily biodegradable which requires that the biological oxygen demand (BOD) is at least 70% of the theoretical oxygen demand (THOD) within the 28-day test period Drinking Water Standard: none available Soil Guidelines: none available Air Quality Standards: none available #### **Ecotoxicity:** Testing shows that acetone exhibits a low order of toxicity Fish LC50: brook trout 6070 mg/l; fathead minnow 15000 mg/l Bird LC0 (5 day): Japanese quail, ring-neck pheasant 40,000 mg/l Daphnia magna LC50 (48 h): 15800 mg/l; NOEC 8500 mg/l Aquatic invertebrate 2100 - 16700 mg/l Aquatic plant NOEC: 5400-7500 mg/l Daphnia magna chronic NOEC 1660 mg/l Acetone vapors were shown to be relatively toxic to two types insects and their eggs. The time to 50% lethality (LT50) was found to be 51.2 hr and 67.9 hr when the flour beetle (*Tribolium confusum*) and the flour moth (*Ephestia kuehniella*) were exposed to an airborne acetone concentration of 61.5 mg/m3. The LT50 values for the eggs were 30-50% lower than for the adult. The direct application of acetone liquid to the body of the insects or surface of the eggs did not, however, cause any mortality. The ability of acetone to inhibit cell multiplication has been examined in a wide variety of microorganisms. The results have generally indicated mild to minimal toxicity with NOECs greater than 1700 mg/L for exposures lasting from 6 hr to 4 days. Longer exposure periods of 7 to 8 days with bacteria produced mixed results; but overall the data indicate a low degree of toxicity for acetone. The only exception to these findings were the results obtained with the flagellated protozoa (*Entosiphon sulcatum*) which yielded a 3-day NOEC of 28 mg/L. ## **DO NOT** discharge into sewer or waterways. ## 12.2. Persistence and degradability | , | | | | |--------------|-----------------------------|----------------------------------|--| | Ingredient | Persistence: Water/Soil | Persistence: Air | | | n-hexane | LOW | LOW | | | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | | acetone | LOW (Half-life = 14 days) | MEDIUM (Half-life = 116.25 days) | | | ethylbenzene | HIGH (Half-life = 228 days) | LOW (Half-life = 3.57 days) | | #### 12.3. Bioaccumulative potential | Ingredient | Bioaccumulation | |--------------|-----------------------| | n-hexane | MEDIUM (LogKOW = 3.9) | | xylene | MEDIUM (BCF = 740) | | acetone | LOW (BCF = 0.69) | | ethylbenzene | LOW (BCF = 79.43) | ## 12.4. Mobility in soil | Ingredient | Mobility | |------------|--------------------| | n-hexane | LOW (KOC = 149) | | acetone | HIGH (KOC = 1.981) | ethylbenzene LOW (KOC = 517.8) #### 12.5.Results of PBT and vPvB assessment | | P | В | Т | |-------------------------|---------------|---------------|---------------| | Relevant available data | Not Available | Not Available | Not Available | | PBT Criteria fulfilled? | Not Available | Not Available | Not Available | #### 12.6. Other adverse effects No data available #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### 13.1. Waste treatment methods - ▶ Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - Recycling - ► Disposal (if all else fails) ## Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ▶ Recycle wherever possible. - ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - ▶ Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material) - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. Waste treatment options Not Available Sewage disposal options Not Available # **SECTION 14 TRANSPORT INFORMATION** ## **Labels Required** Limited Quantity: 4229-55ML, 4229-1L, 4229-4L #### Land transport (ADR) | 14.1.UN number | 1139 | |------------------------------------
--| | 14.2.UN proper shipping name | COATING SOLUTION (includes surface treatments or coatings used for industrial or other purposes such as vehicle under coating, drum or barrel lining) (vapour pressure at 50 °C more than 110 kPa) | | 14.3. Transport hazard class(es) | Class 3 Subrisk Not Applicable | | 14.4.Packing group | | | 14.5.Environmental hazard | Environmentally hazardous | | 14.6. Special precautions for user | Hazard identification (Kemler) 33 Classification code F1 Hazard Label 3 Special provisions 640C; 640D Limited quantity 5 L | | 14.1. UN number | 1139 | |------------------------------------|--| | 14.2. UN proper shipping name | Coating solution (includes surface treatments or coatings used for industrial or other purposes such as vehicle undercoating, drum or barrel linin | | 14.3. Transport hazard class(es) | ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L | | 14.4. Packing group | П | | 14.5. Environmental hazard | Environmentally hazardous | | 14.6. Special precautions for user | Special provisions A3 Cargo Only Packing Instructions 364 Cargo Only Maximum Qty / Pack 60 L Passenger and Cargo Packing Instructions 353 Passenger and Cargo Maximum Qty / Pack 5 L Passenger and Cargo Limited Quantity Packing Instructions Y341 Passenger and Cargo Limited Maximum Qty / Pack 1 L | ## Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 1139 | |------------------------------------|---| | 14.2. UN proper shipping name | COATING SOLUTION (includes surface treatments or coatings used for industrial or other purposes such as vehicle under-coating, drum or barrel lining) | | 14.3. Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | 14.4. Packing group | | | 14.5. Environmental hazard | Marine Pollutant | | 14.6. Special precautions for user | EMS Number F-E , S-E Special provisions Not Applicable Limited Quantities 5 L | ## Inland waterways transport (ADN) | mana waterways transport (F | , | |------------------------------------|---| | 14.1. UN number | 1139 | | 14.2. UN proper shipping name | COATING SOLUTION (includes surface treatments or coatings used for industrial or other purposes such as vehicle under coating, drum or barrel lining) (vapour pressure at 50°C more than 110 kPa) | | 14.3. Transport hazard class(es) | 3 Not Applicable | | 14.4. Packing group | | | 14.5. Environmental hazard | Environmentally hazardous | | 14.6. Special precautions for user | Classification code F1 Special provisions 640C 640D Limited quantity 5 L Equipment required PP, EX, A Fire cones number 1 | ## 14.7. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## **SECTION 15 REGULATORY INFORMATION** 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture SOLVENT NAPHTHA PETROLEUM, LIGHT ALIPHATIC(64742-89-8.) IS FOUND ON THE FOLLOWING REGULATORY LISTS EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 2) Carcinogens: category 1B (Table 3.1)/category 2 (Table 3.2) EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 4) Mutagens: category 1B (Table 3.1)/category 2 (Table 3.2) European Customs Inventory of Chemical Substances ECICS (English) European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) #### N-HEXANE(110-54-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles European Customs Inventory of Chemical Substances ECICS (English) European Trade Union Confederation (ETUC) Priority List for REACH Authorisation XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles European Customs Inventory of Chemical Substances ECICS (English) European Trade Union Confederation (ETUC) Priority List for REACH Authorisation European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31 European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Bulgarian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Czech) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Danish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Dutch) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (English) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Estonian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Finnish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (French) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (German) European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31 European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Air Transport Association (IATA) Dangerous Goods Regulations - Prohibited List Passenger and Cargo Aircraft European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31 European Union (EU) Commission Directive 2006/15/EC establishing a second list of indicative occupational exposure limit values (IOELVs) (Spanish) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI UK Workplace Exposure Limits (WELs) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Greek) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Hungarian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Italian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Latvian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Lithuanian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Maltese) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Polish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Portuguese) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Slovak) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Slovenian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Spanish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Swedish) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs UK Workplace Exposure Limits (WELs) #### ACETONE(67-64-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles European Customs Inventory of Chemical Substances ECICS (English) European Trade Union Confederation (ETUC) Priority List for REACH Authorisation European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31 European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Bulgarian) (Bulgarian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Czech)
European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Danish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Dutch) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (English) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Estonian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Finnish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (French) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (German) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Greek) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Hungarian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Italian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Latvian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Lithuanian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Maltese) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Polish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Portuguese) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Romanian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Slovak) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Slovenian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Spanish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Swedish) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI UK Workplace Exposure Limits (WELs) ## ETHYLBENZENE(100-41-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs) EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles European Customs Inventory of Chemical Substances ECICS (English) European Trade Union Confederation (ETUC) Priority List for REACH Authorisation European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of Dangerous Substances - updated by ATP: 31 European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Bulgarian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Czech) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Danish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Dutch) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (English) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Estonian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Finnish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (French) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (German) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Greek) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Hungarian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Italian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Latvian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Lithuanian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Maltese) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Polish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Portuguese) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Romanian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Slovak) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Slovenian) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) European Union (EU) First List of Indicative Occupational Exposure Limit values (IOELVs) (Spanish) European Union (EU) First List of Indicative Occupational Exposure Limit Values (IOELVs) (Swedish) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs UK Workplace Exposure Limits (WELs) # SILICA AMORPHOUS, FUMED(112945-52-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS European Customs Inventory of Chemical Substances ECICS (English) European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) UK Workplace Exposure Limits (WELs) #### CARBON BLACK(1333-86-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances European Customs Inventory of Chemical Substances ECICS (English) European List of Notified Chemical Substances (ELINCS) European Trade Union Confederation (ETUC) Priority List for REACH Authorisation European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) (English) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs UK Workplace Exposure Limits (WELs) This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : 98/24/EC, 92/85/EC, 94/33/EC, 91/689/EEC, 1999/13/EC, Commission Regulation (EU) 2015/830, Regulation (EC) No 1272/2008 and their amendments #### 15.2. Chemical safety assessment For further information please look at the Chemical Safety Assessment and Exposure Scenarios prepared by your Supply Chain if available National Inventory Status | Australia - AICS | Y | |-------------------------------|--| | Canada - DSL | Y | | Canada - NDSL | N (acetone; silica amorphous, fumed; xylene; ethylbenzene; n-hexane; solvent naphtha petroleum, light aliphatic; carbon black) | | China - IECSC | Y | | Europe - EINEC / ELINCS / NLP | Y | | Japan - ENCS | N (silica amorphous, fumed; solvent naphtha petroleum, light aliphatic) | | Korea - KECI | Υ | | New Zealand - NZIoC | Y | | Philippines - PICCS | Y | | USA - TSCA | Y | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** #### Full text Risk and Hazard codes | H226 | Flammable liquid and vapour. | |-------|--| | H304 | May be fatal if swallowed and enters airways. | | H312 | Harmful in contact with skin. | | H332 | Harmful if inhaled. | | H361f | Suspected of damaging fertility. | | H373 | May cause damage to organs through prolonged or repeated exposure. | | H412 | Harmful to aquatic life with long lasting effects. | #### Other information #### Ingredients with multiple cas numbers | Name | CAS No | |-------------------------|-------------------------------------| | silica amorphous, fumed | 68611-44-9, 112945-52-5, 60842-32-2 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards: EN 166 Personal eye-protection EN 340 Protective clothing EN 374 Protective gloves against chemicals and micro-organisms EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index # Reason for Change A-1.02 - Update to the emergency phone number information.